Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0169423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624219

RESUMO

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.

2.
Biomimetics (Basel) ; 2(3)2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31105179

RESUMO

Mussels generate adhesives for staying in place when faced with waves and turbulence of the intertidal zone. Their byssal attachment assembly consists of adhesive plaques connected to the animal by threads. We have noticed that, every now and then, the animals tug on their plaque and threads. This observation had us wondering if the mussels temper or otherwise control catechol chemistry within the byssus in order to manage mechanical properties of the materials. Here, we carried out a study in which the adhesion properties of mussel plaques were compared when left attached to the animals versus detached and exposed only to an aquarium environment. For the most part, detachment from the animal had almost no influence on the mechanical properties on low-energy surfaces. There was a slight, yet significant difference observed with attached versus detached adhesive properties on high energy surfaces. There were significant differences in the area of adhesive deposited by the mussels on a low- versus a high-energy surface. Mussel adhesive plaques appear to be unlike, for example, spider silk, for which pulling on the material is needed for assembly of proteinaceous fibers to manage properties.

3.
Infect Immun ; 84(9): 2524-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324482

RESUMO

Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Febre Q/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Virulência/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Lisossomos/metabolismo , Camundongos , Transporte Proteico/fisiologia , Febre Q/microbiologia , Vacúolos/metabolismo , Vacúolos/microbiologia
4.
J Bacteriol ; 195(17): 3914-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813730

RESUMO

Coxiella burnetii, the etiological agent of acute and chronic Q fever in humans, is a naturally intracellular pathogen that directs the formation of an acidic Coxiella-containing vacuole (CCV) derived from the host lysosomal network. Central to its pathogenesis is a specialized type IVB secretion system (T4SS) that delivers effectors essential for intracellular replication and CCV formation. Using a bioinformatics-guided approach, 234 T4SS candidate substrates were identified. Expression of each candidate as a TEM-1 ß-lactamase fusion protein led to the identification of 53 substrates that were translocated in a Dot/Icm-dependent manner. Ectopic expression in HeLa cells revealed that these substrates trafficked to distinct subcellular sites, including the endoplasmic reticulum, mitochondrion, and nucleus. Expression in Saccharomyces cerevisiae identified several substrates that were capable of interfering with yeast growth, suggesting that these substrates target crucial host processes. To determine if any of these T4SS substrates are necessary for intracellular replication, we isolated 20 clonal T4SS substrate mutants using the Himar1 transposon and transposase. Among these, 10 mutants exhibited defects in intracellular growth and CCV formation in HeLa and J774A.1 cells but displayed normal growth in bacteriological medium. Collectively, these results indicate that C. burnetii encodes a large repertoire of T4SS substrates that play integral roles in host cell subversion and CCV formation and suggest less redundancy in effector function than has been found in the comparative Legionella Dot/Icm model.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Vacúolos/microbiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Biologia Computacional , Coxiella burnetii/genética , DNA Bacteriano/genética , Células Epiteliais/microbiologia , Humanos , Macrófagos/microbiologia , Camundongos , Mutagênese Insercional , Transporte Proteico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Virulência/genética
5.
Ann Thorac Surg ; 76(3): 915-6, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12963228

RESUMO

The need for reoperation remains a principal limitation of the Ross procedure and most commonly includes replacement of the neo-aortic valve. We describe the use of a valve-sparing procedure in a patient with progressive dilatation of the pulmonary autograft and the remaining native ascending aorta and mild regurgitation of the neo-aortic valve.


Assuntos
Aorta/cirurgia , Complicações Pós-Operatórias/cirurgia , Artéria Pulmonar/cirurgia , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Dilatação Patológica , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/transplante , Procedimentos Cirúrgicos Vasculares/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA